tflite CLIP export

This commit is contained in:
Fynn Petersen-Frey
2023-11-30 22:02:20 +01:00
parent 5f6ad9e239
commit eb0f79b72e
5 changed files with 51 additions and 15 deletions

View File

@@ -22,5 +22,5 @@ dependencies:
- pip:
- multilingual-clip
- onnx-simplifier
- tensorflow
- tensorflow==2.14.*
category: main

View File

@@ -13,20 +13,22 @@ class _CLIPWrapper(tf.Module):
self.model = TFCLIPModel.from_pretrained(model_name)
@tf.function()
def encode_image(self, input):
return self.model.get_image_features(input)
def encode_image(self, input_tensor):
return self.model.get_image_features(input_tensor)
@tf.function()
def encode_text(self, input):
return self.model.get_text_features(input)
def encode_text(self, input_tensor):
return self.model.get_text_features(input_tensor)
# exported model signatures use batch size 2 because of the following reasons:
# 1. ARM-NN cannot use dynamic batch sizes
# 1. ARM-NN cannot use dynamic batch sizes for complex models like CLIP ViT
# 2. batch size 1 creates a larger TF-Lite model that uses a lot (50%) more RAM
# 3. batch size 2 is ~50% faster on GPU than 1 while 4 (or larger) are not faster
# 3. batch size 2 is ~50% faster on GPU than 1 while 4 (or larger) are not really faster
# 4. batch size >2 wastes more computation if only a single image is processed
BATCH_SIZE = 2
BATCH_SIZE_IMAGE = 2
# On most small-scale systems there will only be one query at a time, no sense in batching
BATCH_SIZE_TEXT = 1
SIGNATURE_TEXT = "encode_text"
SIGNATURE_IMAGE = "encode_image"
@@ -52,19 +54,19 @@ def _export_temporary_tf_model(model_name, tmp_path: str, context_length: int):
wrapper = _CLIPWrapper(model_name)
conf = wrapper.model.config.vision_config
spec_visual = tf.TensorSpec(
shape=(BATCH_SIZE, conf.num_channels, conf.image_size, conf.image_size), dtype=tf.float32
shape=(BATCH_SIZE_IMAGE, conf.num_channels, conf.image_size, conf.image_size), dtype=tf.float32
)
encode_image = wrapper.encode_image.get_concrete_function(spec_visual)
spec_text = tf.TensorSpec(shape=(BATCH_SIZE, context_length), dtype=tf.int32)
spec_text = tf.TensorSpec(shape=(BATCH_SIZE_TEXT, context_length), dtype=tf.int32)
encode_text = wrapper.encode_text.get_concrete_function(spec_text)
signatures = {"encode_text": encode_text, "encode_image": encode_image}
signatures = {SIGNATURE_IMAGE: encode_image, SIGNATURE_TEXT: encode_text}
tf.saved_model.save(wrapper, tmp_path, signatures)
def _export_tflite_model(tmp_path: str, signature: str, output_path: str):
converter = tf.lite.TFLiteConverter.from_saved_model(tmp_path, signature_keys=[signature])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float32]
converter.target_spec.supported_types = [tf.float16]
tflite_model = converter.convert()
with open(output_path, "wb") as f:
f.write(tflite_model)

View File

@@ -4,9 +4,10 @@ from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub import create_repo, login, upload_folder
from models import mclip, openclip, tfclip
from rich.progress import Progress
from models import mclip, openclip, tfclip
models = [
"RN50::openai",
"RN50::yfcc15m",