support resnet models, test failed models

This commit is contained in:
mertalev
2024-07-09 00:45:17 -04:00
parent b5acb71b05
commit 3db69b94ed

View File

@@ -20,7 +20,8 @@ from shutil import rmtree
# armnn only supports up to 4d tranposes, but the model has a 5d transpose due to a redundant unsqueeze
# this function folds the unsqueeze+transpose+squeeze into a single 4d transpose
# it also switches from gather ops to slices since armnn has different dimension semantics for gathers
def onnx_transpose_4d(model_path: str):
# also fixes batch normalization being in training mode
def make_onnx_armnn_compatible(model_path: str):
proto = onnx.load(model_path)
graph = import_onnx(proto)
@@ -141,6 +142,60 @@ def onnx_transpose_4d(model_path: str):
node2.inputs[idx] = squeeze_link
except ValueError:
pass
elif node.op == "Reshape":
for node1 in link1.outputs:
if node1.op == "Gather":
node2s = [n for l in node1.outputs for n in l.outputs]
if any(n.op == "Abs" for n in node2s):
axis = node1.attrs.get("axis", 0)
index = node1.inputs[1].values
slice_link = Variable(
f"onnx::Slice_123{gather_idx}",
dtype=node1.outputs[0].dtype,
shape=[1] + node1.outputs[0].shape,
)
slice_node = Node(
op="Slice",
inputs=[
node1.inputs[0],
Constant(
f"SliceStart_123{gather_idx}",
np.array([index]),
),
Constant(
f"SliceEnd_123{gather_idx}",
np.array([index + 1]),
),
Constant(
f"SliceAxis_123{gather_idx}",
np.array([axis]),
),
],
outputs=[slice_link],
name=f"Slice_123{gather_idx}",
)
graph.nodes.append(slice_node)
gather_idx += 1
squeeze_link = Variable(
f"onnx::Squeeze_123{squeeze_idx}",
dtype=node1.outputs[0].dtype,
shape=node1.outputs[0].shape,
)
squeeze_node = Node(
op="Squeeze",
inputs=[slice_link, Constant(f"SqueezeAxis_123{squeeze_idx}",np.array([0]),)],
outputs=[squeeze_link],
name=f"Squeeze_123{squeeze_idx}",
)
graph.nodes.append(squeeze_node)
squeeze_idx += 1
for node2 in node2s:
node2.inputs[0] = squeeze_link
elif node.op == "BatchNormalization":
if node.attrs.get("training_mode") == 1:
node.attrs["training_mode"] = 0
node.outputs = node.outputs[:1]
graph.cleanup(remove_unused_node_outputs=True, recurse_subgraphs=True, recurse_functions=True)
graph.toposort()
@@ -170,12 +225,19 @@ def onnx_make_fixed(input_path: str, output_path: str, input_shape: tuple[int, .
simplified, success = onnxsim.simplify(input_path)
if not success:
raise RuntimeError(f"Failed to simplify {input_path}")
onnx.save(simplified, output_path, save_as_external_data=True, all_tensors_to_one_file=False)
try:
onnx.save(simplified, output_path)
except:
onnx.save(simplified, output_path, save_as_external_data=True, all_tensors_to_one_file=False)
infer_shapes_path(output_path, check_type=True, strict_mode=True, data_prop=True)
model = onnx.load_model(output_path)
make_input_shape_fixed(model.graph, model.graph.input[0].name, input_shape)
fix_output_shapes(model)
onnx.save(model, output_path, save_as_external_data=True, all_tensors_to_one_file=False)
try:
onnx.save(model, output_path)
except:
onnx.save(model, output_path, save_as_external_data=True, all_tensors_to_one_file=False)
onnx.save(model, output_path)
infer_shapes_path(output_path, check_type=True, strict_mode=True, data_prop=True)
@@ -192,7 +254,6 @@ class ExportBase:
super().__init__()
self.name = name
self.optimize = optimization_level
self.nchw_transpose = False
self.input_shape = input_shape
self.pretrained = pretrained
self.cache_dir = os.path.join(os.environ["CACHE_DIR"], self.model_name)
@@ -213,7 +274,7 @@ class ExportBase:
if not os.path.isfile(static_path):
print(f"Making {self.model_name} ({self.task}) static")
onnx_make_fixed(onnx_path_original, static_path, self.input_shape)
onnx_transpose_4d(static_path)
make_onnx_armnn_compatible(static_path)
static_model = onnx.load_model(static_path)
self.inputs = [input_.name for input_ in static_model.graph.input]
self.outputs = [output_.name for output_ in static_model.graph.output]
@@ -247,10 +308,10 @@ class ExportBase:
armnn_fp16 = os.path.join(fp16_dir, "model.armnn")
args = ["./armnnconverter", "-f", "tflite-binary"]
for input_ in self.inputs:
args.extend(["-i", input_])
for output_ in self.outputs:
args.extend(["-o", output_])
args.append("-i")
args.extend(self.inputs)
args.append("-o")
args.extend(self.outputs)
fp32_args = args.copy()
fp32_args.extend(["-m", tflite_fp32, "-p", armnn_fp32])
@@ -320,32 +381,28 @@ def main() -> None:
failed: list[Callable[[], ExportBase]] = [
lambda: OpenClipVisual("ViT-H-14-378-quickgelu", (1, 3, 378, 378), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
lambda: OpenClipVisual("ViT-H-14-quickgelu", (1, 3, 224, 224), pretrained="dfn5b"), # flatbuffers: cannot grow buffer beyond 2 gigabytes (will probably work with fp16)
lambda: OpenClipTextual("nllb-clip-base-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
lambda: OpenClipTextual("nllb-clip-large-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e31"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e31"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e32"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e32"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b82k"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion2b-s32b-b82k"),
lambda: OpenClipVisual("ViT-H-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b79k"),
lambda: OpenClipTextual("ViT-H-14", (1, 77), pretrained="laion2b-s32b-b79k"),
lambda: OpenClipVisual("ViT-g-14", (1, 3, 224, 224), pretrained="laion2b-s12b-b42k"),
lambda: OpenClipTextual("ViT-g-14", (1, 77), pretrained="laion2b-s12b-b42k"),
lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-16Plus", (1, 3, 240, 240)),
lambda: OpenClipVisual("XLM-Roberta-Large-ViT-H-14", (1, 3, 224, 224), pretrained="frozen_laion5b_s13b_b90k"),
lambda: OpenClipVisual("nllb-clip-base-siglip", (1, 3, 384, 384), pretrained="v1"),
lambda: OpenClipVisual("nllb-clip-large-siglip", (1, 3, 384, 384), pretrained="v1"),
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipTextual("RN50", (1, 77), pretrained="yfcc15m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
lambda: OpenClipTextual("RN50", (1, 77), pretrained="cc12m"), # BatchNorm operation with mean/var output is not implemented
lambda: MClipTextual("XLM-Roberta-Large-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: MClipTextual("XLM-Roberta-Large-Vit-B-16Plus", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: MClipTextual("LABSE-Vit-L-14", (1, 77)), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
lambda: OpenClipTextual("XLM-Roberta-Large-ViT-H-14", (1, 77), pretrained="frozen_laion5b_s13b_b90k"), # Expected normalized_shape to be at least 1-dimensional, i.e., containing at least one element, but got normalized_shape = []
]
oom = [
lambda: OpenClipVisual("nllb-clip-base-siglip", (1, 3, 384, 384), pretrained="v1"),
lambda: OpenClipTextual("nllb-clip-base-siglip", (1, 77), pretrained="v1"),
lambda: OpenClipVisual("nllb-clip-large-siglip", (1, 3, 384, 384), pretrained="v1"),
lambda: OpenClipTextual("nllb-clip-large-siglip", (1, 77), pretrained="v1"), # ERROR (tinynn.converter.base) Unsupported ops: aten::logical_not
# lambda: OpenClipTextual("ViT-H-14-quickgelu", (1, 77), pretrained="dfn5b"),
# lambda: OpenClipTextual("ViT-H-14-378-quickgelu", (1, 77), pretrained="dfn5b"),
# lambda: OpenClipVisual("XLM-Roberta-Large-Vit-L-14", (1, 3, 224, 224)),
]
succeeded: list[Callable[[], ExportBase]] = [
# lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="laion2b_e16"),
# lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="laion2b_e16"),
@@ -363,18 +420,25 @@ def main() -> None:
# lambda: OpenClipTextual("ViT-B-16-plus-240", (1, 77), pretrained="laion400m_e31"),
# lambda: OpenClipVisual("ViT-B-32", (1, 3, 224, 224), pretrained="openai"),
# lambda: OpenClipTextual("ViT-B-32", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="openai"),
lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="openai"),
# lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="openai"),
# lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="openai"),
# lambda: OpenClipVisual("ViT-L-14-336", (1, 3, 336, 336), pretrained="openai"),
# lambda: OpenClipTextual("ViT-L-14-336", (1, 77), pretrained="openai"),
# lambda: OpenClipVisual("ViT-B-16", (1, 3, 224, 224), pretrained="openai"),
# lambda: OpenClipTextual("ViT-B-16", (1, 77), pretrained="openai"),
# lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="openai"),
# lambda: OpenClipTextual("RN50", (1, 77), pretrained="openai"),
# lambda: OpenClipTextual("ViT-H-14-quickgelu", (1, 77), pretrained="dfn5b"),
# lambda: OpenClipTextual("ViT-H-14-378-quickgelu", (1, 77), pretrained="dfn5b"),
# lambda: OpenClipVisual("XLM-Roberta-Large-Vit-L-14", (1, 3, 224, 224)),
# lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="yfcc15m"),
# lambda: OpenClipTextual("RN50", (1, 77), pretrained="yfcc15m"),
# lambda: OpenClipVisual("RN50", (1, 3, 224, 224), pretrained="cc12m"),
# lambda: OpenClipTextual("RN50", (1, 77), pretrained="cc12m"),
# lambda: OpenClipVisual("XLM-Roberta-Large-Vit-B-32", (1, 3, 224, 224)),
# lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="openai"),
# lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="openai"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e31"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e31"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion400m_e32"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion400m_e32"),
lambda: OpenClipVisual("ViT-L-14", (1, 3, 224, 224), pretrained="laion2b-s32b-b82k"),
lambda: OpenClipTextual("ViT-L-14", (1, 77), pretrained="laion2b-s32b-b82k"),
# lambda: OpenClipVisual("ViT-L-14-336", (1, 3, 336, 336), pretrained="openai"),
# lambda: OpenClipTextual("ViT-L-14-336", (1, 77), pretrained="openai"),
# lambda: ArcFace("buffalo_s", (1, 3, 112, 112), optimization_level=3),
# lambda: RetinaFace("buffalo_s", (1, 3, 640, 640), optimization_level=3),
# lambda: ArcFace("buffalo_m", (1, 3, 112, 112), optimization_level=3),